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ABSTRACT. Let F[z] be the space of polynomials in d variables, let &N be the
Grassmannian of N-dimensional subspaces of F[z] and let Jy stand for the
family of all ideals in F[z] of codimension N. For a given G € &N we let
3@:={J€3N:JQG={O}}

Is it true, that (with appropriate topology on Jn) the set Jg is dense in Jn 7
In general the answer is "No”. What is even more surprising, that there are
?good ideals” J € Jn such that every ”neighborhood” U(J) C Jn has a
non-empty intersection with Jg for any G € &N and there are ”bad” ideals
J € Jn (for d > 3) such that some ”neighborhoods” U(J) C Jn have an
empty intersection with Jg for some G € &Y. This contrast illuminates the
non-homogeneous nature of Jy.

1. PRELIMINARIES

Let F be anormed linear space, let &V (F) be the Grassmannian of N-dimensional
subspaces of F' and let &y (F') denotes the Grassmannian of all subspaces of F' of
codimension N. For a given G € & (F) let

Bg(F):={Je6N(F): JNG ={0}}

i.e.,, B¢ (F) is a family of all subspaces J in F' that are "missing” G or, equivalently,
the family of all subspaces of F' that complement G.

It is well-known and easy to see that (with appropriate topology on &y (F')) for
any G € 8V (F), the set B(F) is an open and dense subset of & v (F).

The main focus of this article is an investigation of the following ”ideal” version
of this statement.

Let F' = Flz] = [z1, ..., 4] be the space of polynomials in d variables over the
field F of real or complex numbers. Let Jy stand for the family of all ideals in Flx]
of codimension N. Let &V := &V (F[z]). For a given G € &V we let

Jo:={J€In: NG ={0}}

Question : s it still true, that Jg is dense in Jn?

In general the answer is "No”. What is even more surprising, that there are
”good ideals” J € Jn such that every "neighborhood” U(J) C Jn has a non-empty
intersection with Jg for any G € & and there are "bad” ideals J € Jn (for d > 3)
such that some "neighborhoods” U(J) C Jn have an empty intersection with Ja
for some G € &Y. This contrast illuminates the non-homogeneous nature of J (as
oppose to By).
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We will use the rest of this section to describe the topology on Jy. Actually, any
norm on F[x| and any ”"reasonable” notion of convergence of a sequences of ideals
in Jn will lead to the same results. The underlined reason for it is the existence of
intrinsic (Zariski) topology on the Hilbert scheme gV (F¢) parametrizing Jx, which
is formally weaker then any reasonable topology (cf. [6]).

For the sake of specificity, define the norm of f = 3 f(k)x* € F[x] by

171 = 32 | F )
k

which turns F[x] into a normed space with continuous multiplication. Let (F[x])’
be the dual of F[x]. An ideal J € Jy induces an N-dimensional subspace J+ C
(F[x]) defined as

)

Jti={xe (Fx])) : A(f) =0,Vf € J}
that uniquely identifies the ideal J via (J*)T = J. We will adopt the following

definition of convergence:

Definition 1.1. Let (J,, m € N) be a sequence of ideals in Iy and let J € Jn.
We say that J,, — J if for every X € J* there exists \,, € J5 such that

(1.1) Am(f) — A(f)
for every f € F[x].

A simple perturbation argument yields the following;:

Theorem 1.2. (cf [8]) Let (J, Jpm, m € N) be a sequence of ideals in In such that
Jm — J. Let E € &N complements J. Then the space E complements J,, for
sufficiently large m and

(1.2) Pnf — Pf

for all f € F[x], where P, and P are projections onto E with ker Py, = Jp,,
ker P = J.

Conversely, let P, and P be projections onto a space E with ideal kernels, such
that (1.2) holds. Then ker P,, — ker P.

Definition 1.3. (Birkhoff, [1]). A linear idempotent operator P on F[x| is called
an ideal projection if ker P is an ideal in F[x].

The symbol Py will stand for all N-dimensional ideal projections and for a
G € 6 we let Pg be the family of all ideal projections onto G. Thus Jg is in
one-to-one correspondence with P

A nice characterization of ideal projections is due to C. de Boor [2]:

Proposition 1.4. Let P be a linear mapping on F[x]. Then P is an ideal projection
if and only if
(1.3) P(fg) = P(f - Pg)
for all f,g € F[x].
In one variable, the space F<n[z] of polynomials of degree less than N comple-

ments every ideal J € Jn (cf. proof of Proposition 2.1 below). In two or more
variables there does not exist a subspace G' € &V with this property. However:
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Theorem 1.5. For every N and d there exists a fized finite family EN of N-
dimensional (translation-invariant and spanned by monomials) subspaces of F[x]
such that every J € Jn complements at least one E € EV.

Let F<n[x] be the space of polynomials of degree less than N and F<y[x] be
the space of polynomials of degree at most V. It follows from Theorem 1.5 that
every E € £V is a subspace of F_y[x], i.e., EN C &N (Fon[x])

The next theorem is a consequence of Theorem 1.5 and the de Boor’s formula.

Theorem 1.6. Let (J, J,,, m € N) be a sequence of ideals in Iy .Then Jp, — J if

and only if there exists a subspace E € F.n[x] and a sequence of ideal projections
(P, P, m > M) such ker P = J, ker P,, = J,,, and

(1.4) [P = Prallp_ s — 0-
Proof. If J € Jn then by Theorem 1.5 there exists a subspace E C F.y[x] that
complements J and since F<y[x] is finite-dimensional, by the Theorem 1.2, (1.3)
implies (1.4).

Conversely, suppose that f € F<g[x] for some K € N. If K < N then (1.2)

follows from (1.4). Assuming (1.2) for all monomials f € F<g[x], let g be a
monomial of degree K + 1. Then g = z; f for some j =1, ...,d and by (1.3):

1Pg ~ Puglle_ g = 1P@;PF) ~ Pty Pudls g — 0

since z;Pf,z; Py, f € F<n[x| and z,; P, f — x;Pf by inductive assumption. Hence
(1.2) holds for all monomials. O

This theorem allows us to define an e-neighborhood of an ideal J € Jy: Let
E € EN be such that J € Jg. Let P be an ideal projection onto F with ker P = F.
Define

UE, J.e) = {kerQ,: Q € B, [P = Qllp_, 1 < &
and

U(J,e) = JQJEU(E’J’ €).

2. 7GooD IDEALS”
We will now examine closely one special space E € £V:
(2.1) E = span{l,xl,xf,...,x]lv_l}

viewed as an N-dimensional subspace of F[x| = F[z1, xa, ..., 24]. Let P be an ideal
projection onto E. Then

P@)=p = Zg;ol byt

P(xs) =py =S by jx],
(2.2) I=0 TR
P(2a) = pa = X7 baj].
Let B be the collection of coefficients

(2.3) B=(bpjk=1,..,d;j=0,..,N—1)
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Then, by the de Boor’s formula (1.3), we have

N-1
P = PaPz)) = P(z1()_ b))
=0

N—-1 . N-—1 ) N-2 )
= PO _bigal™) =biyva (D bzl + > byjalth
§=0 j=0 §=0

N-1
= byn-1bio+ Z by nv—1(b1; + bl,jfl)xjy
j=1

Inductively, we conclude that
N—-1 ‘
P(z) =Y qi;(B)z]
j=0

for all k, where g ; € F[B] are polynomials in d N variables B. Now, using P(z; f) =
P(fPz;) for every f € E we conclude that

N-1
(2.4) Pf=> qr;(B)a]
=0

for f € z;E, where q;; € F[B]. Inductively, (1.8) holds for all f € xXE and
therefore for all f € F[x] with ¢;; € F[B].

Hence a sequence of d polynomials (p1, ..., pq) given by (1.4) (or equivalently the
sequence of dN coeflicients B) completely determines the ideal projector P onto E.
What so special about this particular space F is that the converse also holds:

Proposition 2.1. Every sequence (pi,...,pq) of polynomials in E defines an ideal
J = <ac]1V — P1,To — P2,y .oy Tg — pd> that complements E. Hence every sequence B of
dN scalars defines an ideal projection Pg onto E by (2.4) and every ideal projection
P onto E defines a sequence Bp by (2.2). Clearly

PBP = P and BPB = B.

Proof. Tt is clear from the construction of E that ENJ = {0}. Let f € F[z1] be
a polynomial in only one variable. Using the division algorithm in F[z;] we have
f =q(z —p1)+r with degr < N. Thus the ideal (z}' — p1) generated by 2 —p;
complements the space F. n[z1] of polynomials of degree less than N in F[x;] and
E + J D Flz4]. Inductively, we assume that E 4+ J D Flzy, ..., zx], k < d and prove
that E+J D Flxy, ..., ¥k, Tx11], i.e., we need to show that 7 | Flz1,...,xx] C E+J
for all n. For f € Flxy, ..., %] we have

(2.5) Tpprf = (@p1 — Do) f 061 f EE+J

since the first term is in the ideal J and the second belongs to E + J by inductive
assumption. Using induction on n, assume that f € J;ZHIF[xl, ..., Zx] and conclude

that zp41f € mZI}]F[xl, ..., Zx] has a representation (2.5). ]

Corollary 2.2. B,, — B if and only if ker Pg_ — ker Pp.

Proof. Since g5 ;(B) in (2.4) are polynomials (hence continuous function of B)
B,, — B implies Pg, f — Ppf for every f. Conversely, if Pg_f — Ppf then
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Pp, 2y — Pgzy and Pg, x; — Ppgx; for all j = 2,...,d. Now B,, — B follows
from (2.2). O

We are now ready to prove that every ideal J € Jg is a "good ideal”.

Theorem 2.3. Let J € Jp and G € &Y. Then every neighborhood U(J) has a
non-empty intersection with Jg.

Proof. First, we establish that Jp N Jg # @. Let g1,...,gn be a bases in G and
e1,...,en be a bases in E. There exists a sequence {z,...,z%} of points in F¢ such
that g;(z}) = d;, and hence the polynomial

det(g,(zx),7 =1,...N)

in dN variables (coordinates of the points z) is not identically zero. Therefore the
set

Zq ={(z1,...,2n) : det(g;(zx)) # 0
is an open and dense set in (F?)". Similarly the set
Zg :={(z1,...,zn) : det(e;(zx)) # 0

is an open and dense set in (F)N. Thus Zg N Zg # @ and for any (zy,...,zy) €
Za N Zg, the ideal
J:={feFx]: f(z;) =0,j=1,..N}

complements F and G.
Therefore, there exists a sequence B* € F?N such that Pg- is an ideal projection
onto F and ker Pp~ € Jg. Let

Be :={B¢€ FN . ker P € Jat-
It follows that Bg # &. Suppose that ker Pg € J¢ i.e., ker P NG = {0}. Then

N

N
PB(Z akgr) = Z apPpgr =0
k=1 k=1
implies a, = 0 for all kK = 1,..., N. Hence ker Pg € J is the same as linear
independency of the sequence of polynomials (Pggx,k = 1,..., N). Since, by (2.4),
Ppf= Z;v:_ol Ggr..;(B)x) this is equivalent to

det (g, ;(B)) # 0.

Since Bg # &, this determinant is a non-zero polynomial in F[B], hence there exists
an open and dense set of B C F4N such that ker Pg € Je. O

3. ”BAD IDEALS”

In this section we will use a beautiful construction of A. Iarrobino and mod-
ified the reasoning of [7] to show that for d > 3 and for sufficiently large N
there exists an ideal J € Jy such that J is not the limit of ideals in Jg, where
E :=span{1,z1, 2%, ..., Jc{v*l} is the space considered in the previous section.

Let W := M2, [x] be the set of monomials of degree less than n. Let U UV =
M¢Z[x] be a non-trivial partition of the set M?[x] of all monomials of degree n in
F[x]. Let H be the subspace of F[x] spanned by FZ, [x] and V and let

(3.1) N =dimH = #V + #W
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For any choice of matrix C € FVXV | the space .Jo spanned by monomials of degree
greater than n and the specific polynomials

(3.2) Dy = U — Z C(u,v)v, ue U,

veV
complements H and is an ideal. The latter is so because each p, is homogeneous,
thus every product of a monomial with p,, is in Jo. Furthermore, as is easy to see
(3.3) Fix| =H® Je.
for each C.

Theorem 3.1. For any d > 3 and for sufficiently large n, there exists a partition
UUV = M2[x] and a matriz C € FV*V such that the ideal Jo can not be perturbed
to complement E .

Proof. Assume that Jo complements H and that there is a small perturbation of
Jo that complements E. In other words, assume the existence of a sequence of
ideals {J;,,} such that each .J,, complements G and J,, — Jo. This is the same
as the existence of a sequence of ideal projections P,, onto H such that ker P,
complements E and H at the same time and P,,f — Pf for every f € Fi[x]. In
particular
u— Ppu— u— ZC(u,v)v,Vue U.
veV
Since P, is a projection onto H it follows that

(3.4) Phu= Z Co(u,v)v + Z Con (u, w)w

veV weW

and
(3.5) Cm(u,v) — C(u,v),Yu € U and C,(u,w) — 0,YVw € W.

Since ker P,, complements E, we let @.,, be the ideal projection onto E with
ker ., = ker P,,. Then u — P,,u € ker P,,, = ker ),,, and

0=Qm(u— Pnpu) =Qnu— ZC’ qumv+ZC (u, w)Qmw)

veV weWw
or
(36) Z Om(ua U)va + Z Cm(ua w)Qmw = Qnu.
veV weWw

At this point it is important to notice that, as projections onto E, the operators
Q@ depend polynomially on d x N parameters B as in (2,4):

(3.7) Qunf = Z a7 (B

where q,(!f) € FN[B]. Rewriting (3.6) we have:

N-— N-1

(3.8) Z > Crnu,0)gW(B) + D Conlu, W)a™) (B))zh ") (B)zk

=0 veV weWw k=0
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or equivalently
(3.9)
Z Cm(u,v)q,gt?})(B) + Z Cm(u,w)qlgrfu)(B) = q,(:;)(B),u eU,k=0,..,N —1.
veV weWw
Since #V + #W = N, this is the system of N x #U equations with the same
number of unknowns {C,, (u,v),u € U} and {Cy,(u,w),u € U}. By Cramer’s rule

_ det Vinouw(B)
(3.10) C(u,v) = etV (B Vo (B)

where det V;,,(B) is the determinant of the matrix on the left-hand side of (3.9),
and det V},, 4., (A) is the determinant of the same matrix with the (u, k)-th column
replaced by the column (q,(:Z)(B)) Notice that that makes Cy,(u,v) rational func-
tion of d x N parameters B with common denominator. Thinking of 1/ det V;,,(B)
as just another variable, say z, we conclude that the set

¢:={zdetV; u0(B), BTN 2 cF\{0}} c FFU>#V

is a polynomial image of FV*1 where the first dN parameters are the parameters
of B. As such € forms an affine subvariety of F#U*#V with dim € <dN +1 (cf [4],
Theorem 2, p. 466). Hence if

(3.11) #U x #V > dN +1

then there exists a collection C(u,v) € F#UX#V which is not in the closure of ¢,
contradicting (3,5).
Now we only need to count. As was pointed out in [5], we have #Md[x] =

("jﬁ;l) ~ (%)7 choosing the partition U UV = MZ[x] such that #U =

B ("gf;l)J we have

| lfn4d=1\|[1{n+d=1\] 1 nit o, L,
v [ [ ] = =

while N' = dim H = dimFL,[x] — #U = ("§%) = | 5("4*")| ~ % ~ n. Hence

d 2\ d-1
for sufficiently large n, (3.11) holds. Direct computation yield (3.11) with n = 7,
ford=3;n=3ford=4or5and n=2ford>5. O

Remark 3.2. The ”bad” ideals do not exist in F[x| for d = 1, as follow from the
Theorem?2.3, since, for d =1, every ideal in Jn is complemented to

— 2 N-1
E := span{l,z1,27,....,27  }.

"Bad” ideals also do not exist in C[x] for d = 2 as noted in [8]. The existence of
"bad” ideals in R[x] for d =2 is an open problem.
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