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Abstract. Let F[x] be the space of polynomials in d variables, let GN be the
Grassmannian of N -dimensional subspaces of F[x] and let JN stand for the
family of all ideals in F[x] of codimension N . For a given G ∈ GN we let

JG := {J ∈ JN : J ∩G = {0}}
Is it true, that (with appropriate topology on JN ) the set JG is dense in JN?
In general the answer is ”No”. What is even more surprising, that there are
”good ideals” J ∈ JN such that every ”neighborhood” U(J) ⊂ JN has a
non-empty intersection with JG for any G ∈ GN and there are ”bad” ideals
J ∈ JN (for d ≥ 3) such that some ”neighborhoods” U(J) ⊂ JN have an
empty intersection with JG for some G ∈ GN . This contrast illuminates the
non-homogeneous nature of JN .

1. Preliminaries

Let F be a normed linear space, let GN (F ) be the Grassmannian of N -dimensional
subspaces of F and let GN (F ) denotes the Grassmannian of all subspaces of F of
codimension N . For a given G ∈ GN (F ) let

GG(F ) := {J ∈ GN (F ) : J ∩G = {0}}
i.e., GG(F ) is a family of all subspaces J in F that are ”missing” G or, equivalently,
the family of all subspaces of F that complement G.

It is well-known and easy to see that (with appropriate topology on GN (F )) for
any G ∈ GN (F ), the set GG(F ) is an open and dense subset of GN (F ).

The main focus of this article is an investigation of the following ”ideal” version
of this statement.

Let F = F[x] = [x1, ..., xd] be the space of polynomials in d variables over the
field F of real or complex numbers. Let JN stand for the family of all ideals in F[x]
of codimension N . Let GN := GN (F[x]). For a given G ∈ GN we let

JG := {J ∈ JN : J ∩G = {0}}
Question : Is it still true, that JG is dense in JN?
In general the answer is ”No”. What is even more surprising, that there are

”good ideals” J ∈ JN such that every ”neighborhood” U(J) ⊂ JN has a non-empty
intersection with JG for any G ∈ GN and there are ”bad” ideals J ∈ JN (for d ≥ 3)
such that some ”neighborhoods” U(J) ⊂ JN have an empty intersection with JG

for some G ∈ GN . This contrast illuminates the non-homogeneous nature of J (as
oppose to GN ).
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We will use the rest of this section to describe the topology on JN . Actually, any
norm on F[x] and any ”reasonable” notion of convergence of a sequences of ideals
in JN will lead to the same results. The underlined reason for it is the existence of
intrinsic (Zariski) topology on the Hilbert scheme FN (Fd) parametrizing JN , which
is formally weaker then any reasonable topology (cf. [6]).

For the sake of specificity, define the norm of f =
∑

f̂(k)xk ∈ F[x] by

‖f‖ :=
∑

k

∣∣∣f̂(k)
∣∣∣ ,

which turns F[x] into a normed space with continuous multiplication. Let (F[x])
′

be the dual of F[x]. An ideal J ∈ JN induces an N -dimensional subspace J⊥ ⊂
(F[x])

′
defined as

J⊥ := {λ ∈ (F[x])
′
: λ(f) = 0, ∀f ∈ J}

that uniquely identifies the ideal J via (J⊥)> = J . We will adopt the following
definition of convergence:

Definition 1.1. Let (Jm, m ∈ N) be a sequence of ideals in JN and let J ∈ JN .
We say that Jm → J if for every λ ∈ J⊥ there exists λm ∈ J⊥m such that

(1.1) λm(f) −→ λ(f)

for every f ∈ F[x].

A simple perturbation argument yields the following:

Theorem 1.2. (cf [8]) Let (J, Jm, m ∈ N) be a sequence of ideals in JN such that
Jm → J . Let E ∈ GN complements J . Then the space E complements Jm for
sufficiently large m and

(1.2) Pmf → Pf

for all f ∈ F[x], where Pm and P are projections onto E with kerPm = Jm,
kerP = J .

Conversely, let Pm and P be projections onto a space E with ideal kernels, such
that (1.2) holds. Then kerPm → kerP .

Definition 1.3. (Birkhoff, [1]). A linear idempotent operator P on F[x] is called
an ideal projection if kerP is an ideal in F[x].

The symbol PN will stand for all N -dimensional ideal projections and for a
G ∈ GN we let PG be the family of all ideal projections onto G. Thus JG is in
one-to-one correspondence with PG.

A nice characterization of ideal projections is due to C. de Boor [2]:

Proposition 1.4. Let P be a linear mapping on F[x]. Then P is an ideal projection
if and only if

(1.3) P (fg) = P (f · Pg)

for all f, g ∈ F[x].

In one variable, the space F<N [x] of polynomials of degree less than N comple-
ments every ideal J ∈ JN (cf. proof of Proposition 2.1 below). In two or more
variables there does not exist a subspace G ∈ GN with this property. However:
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Theorem 1.5. For every N and d there exists a fixed finite family EN of N -
dimensional (translation-invariant and spanned by monomials) subspaces of F[x]
such that every J ∈ JN complements at least one E ∈ EN .

Let F<N [x] be the space of polynomials of degree less than N and F≤N [x] be
the space of polynomials of degree at most N . It follows from Theorem 1.5 that
every E ∈ EN is a subspace of F<N [x], i.e., EN ⊂ GN (F<N [x])

The next theorem is a consequence of Theorem 1.5 and the de Boor’s formula.

Theorem 1.6. Let (J, Jm, m ∈ N) be a sequence of ideals in JN .Then Jm → J if
and only if there exists a subspace E ∈ F<N [x] and a sequence of ideal projections
(P, Pm, m > M) such kerP = J , kerPm = Jm and

(1.4) ‖P − Pm‖F≤N [x] → 0.

Proof. If J ∈ JN then by Theorem 1.5 there exists a subspace E ⊂ F<N [x] that
complements J and since F≤N [x] is finite-dimensional, by the Theorem 1.2, (1.3)
implies (1.4).

Conversely, suppose that f ∈ F≤K [x] for some K ∈ N. If K ≤ N then (1.2)
follows from (1.4). Assuming (1.2) for all monomials f ∈ F≤K [x], let g be a
monomial of degree K + 1. Then g = xjf for some j = 1, ..., d and by (1.3):

‖Pg − Pmg‖F≤N [x] = ‖P (xjPf)− Pm(xjPmf)‖F≤N [x] → 0

since xjPf, xjPmf ∈ F≤N [x] and xjPmf → xjPf by inductive assumption. Hence
(1.2) holds for all monomials. ¤

This theorem allows us to define an ε-neighborhood of an ideal J ∈ JN : Let
E ∈ EN be such that J ∈ JE . Let P be an ideal projection onto E with kerP = E.
Define

U(E, J, ε) = {kerQ, : Q ∈ PE , ‖P −Q‖F≤N [x] < ε

and
U(J, ε) = ∩

J∈JE

U(E, J, ε).

2. ”Good Ideals”

We will now examine closely one special space E ∈ EN :

(2.1) E := span{1, x1, x
2
1, ..., x

N−1
1 }

viewed as an N -dimensional subspace of F[x] = F[x1, x2, ..., xd]. Let P be an ideal
projection onto E. Then

(2.2)

P (xN
1 ) = p1 =

∑N−1
j=0 b1,jx

j
1,

P (x2) = p2 =
∑N−1

j=0 b2,jx
j
1,

...
P (xd) = pd =

∑N−1
j=0 bd,jx

j
1.

Let B be the collection of coefficients

(2.3) B = (bk,j , k = 1, ..., d; j = 0, ..., N − 1)
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Then, by the de Boor’s formula (1.3), we have

P (xN+1
1 ) = P (x1PxN

1 ) = P (x1(
N−1∑

j=0

b1,jx
j
1))

= P (
N−1∑

j=0

b1,jx
j+1
1 ) = b1,N−1(

N−1∑

j=0

b1,jx
j
1 +

N−2∑

j=0

b1,jx
j+1
1 )

= b1,N−1b1,0 +
N−1∑

j=1

b1,N−1(b1,j + b1,j−1)x
j
1.

Inductively, we conclude that

P (xk
1) =

N−1∑

j=0

qk,j(B)xj
1

for all k, where qk,j ∈ F[B] are polynomials in dN variables B. Now, using P (xjf) =
P (fPxj) for every f ∈ E we conclude that

(2.4) Pf =
N−1∑

j=0

qf,j(B)xj
1

for f ∈ xjE, where qf,j ∈ F[B]. Inductively, (1.8) holds for all f ∈ xkE and
therefore for all f ∈ F[x] with qf,j ∈ F[B].

Hence a sequence of d polynomials (p1, ..., pd) given by (1.4) (or equivalently the
sequence of dN coefficients B) completely determines the ideal projector P onto E.
What so special about this particular space E is that the converse also holds:

Proposition 2.1. Every sequence (p1, ..., pd) of polynomials in E defines an ideal
J =

〈
xN

1 − p1, x2 − p2, ..., xd − pd

〉
that complements E. Hence every sequence B of

dN scalars defines an ideal projection PB onto E by (2.4) and every ideal projection
P onto E defines a sequence BP by (2.2). Clearly

PBP = P and BPB = B.

Proof. It is clear from the construction of E that E ∩ J = {0}. Let f ∈ F[x1] be
a polynomial in only one variable. Using the division algorithm in F[x1] we have
f = q(xN

1 −p1)+r with deg r < N . Thus the ideal
〈
xN

1 − p1

〉
generated by xN

1 −p1

complements the space F<N [x1] of polynomials of degree less than N in F[x1] and
E + J ⊃ F[x1]. Inductively, we assume that E + J ⊃ F[x1, ..., xk], k < d and prove
that E+J ⊃ F[x1, ..., xk, xk+1], i.e., we need to show that xn

k+1F[x1, ..., xk] ⊂ E+J
for all n. For f ∈ F[x1, ..., xk] we have

(2.5) xk+1f = (xk+1 − pk+1)f + pk+1f ∈ E + J

since the first term is in the ideal J and the second belongs to E + J by inductive
assumption. Using induction on n, assume that f ∈ xn

k+1F[x1, ..., xk] and conclude
that xk+1f ∈ xn+1

k+1F[x1, ..., xk] has a representation (2.5). ¤

Corollary 2.2. Bm → B if and only if kerPBm → kerPB.

Proof. Since qf,j(B) in (2.4) are polynomials (hence continuous function of B)
Bm → B implies PBmf → PBf for every f . Conversely, if PBmf → PBf then
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PBmxN
1 → PBxN

1 and PBmxj → PBxj for all j = 2, ..., d. Now Bm → B follows
from (2.2). ¤

We are now ready to prove that every ideal J ∈ JE is a ”good ideal”.

Theorem 2.3. Let J ∈ JE and G ∈ GN . Then every neighborhood U(J) has a
non-empty intersection with JG.

Proof. First, we establish that JE ∩ JG 6= ∅. Let g1, ..., gN be a bases in G and
e1, ..., eN be a bases in E. There exists a sequence {z∗1, ..., z∗N} of points in Fd such
that gj(z∗k) = δj,k and hence the polynomial

det(gj(zk), j = 1, ...N)

in dN variables (coordinates of the points zk) is not identically zero. Therefore the
set

ZG := {(z1, ..., zN ) : det(gj(zk)) 6= 0

is an open and dense set in (Fd)N . Similarly the set

ZE := {(z1, ..., zN ) : det(ej(zk)) 6= 0

is an open and dense set in (Fd)N . Thus ZG ∩ ZE 6= ∅ and for any (z1, ..., zN ) ∈
ZG ∩ ZE , the ideal

J := {f ∈ F[x] : f(zj) = 0, j = 1, ...N}
complements E and G.

Therefore, there exists a sequence B∗ ∈ FdN such that PB∗ is an ideal projection
onto E and ker PB∗ ∈ JG. Let

BG := {B ∈ FdN : kerPB ∈ JG}.
It follows that BG 6= ∅. Suppose that kerPB ∈ JG i.e., kerPB ∩G = {0}. Then

PB(
N∑

k=1

αkgk) =
N∑

k=1

αkPBgk = 0

implies αk = 0 for all k = 1, ..., N . Hence kerPB ∈ JG is the same as linear
independency of the sequence of polynomials (PBgk, k = 1, ..., N). Since, by (2.4),
PBf =

∑N−1
j=0 qgk,j(B)xj

1 this is equivalent to

det(qgk,j(B)) 6= 0.

Since BG 6= ∅, this determinant is a non-zero polynomial in F[B], hence there exists
an open and dense set of B ⊂ FdN such that kerPB ∈ JG. ¤

3. ”Bad Ideals”

In this section we will use a beautiful construction of A. Iarrobino and mod-
ified the reasoning of [7] to show that for d ≥ 3 and for sufficiently large N
there exists an ideal J ∈ JN such that J is not the limit of ideals in JE , where
E :=span{1, x1, x

2
1, ..., x

N−1
1 } is the space considered in the previous section.

Let W := Md
<n[x] be the set of monomials of degree less than n. Let U ∪ V =

Md
n[x] be a non-trivial partition of the set Md

n[x] of all monomials of degree n in
F[x]. Let H be the subspace of F[x] spanned by Fd

<n[x] and V and let

(3.1) N = dim H = #V + #W
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For any choice of matrix C ∈ FU×V , the space JC spanned by monomials of degree
greater than n and the specific polynomials

(3.2) pu := u−
∑

v∈V

C(u, v)v, u ∈ U ,

complements H and is an ideal. The latter is so because each pu is homogeneous,
thus every product of a monomial with pu is in JC . Furthermore, as is easy to see

(3.3) F[x] = H ⊕ JC .

for each C.

Theorem 3.1. For any d ≥ 3 and for sufficiently large n, there exists a partition
U ∪V = Md

n[x] and a matrix C ∈ FU×V such that the ideal JC can not be perturbed
to complement E.

Proof. Assume that JC complements H and that there is a small perturbation of
JC that complements E. In other words, assume the existence of a sequence of
ideals {Jm} such that each Jm complements G and Jm → JC . This is the same
as the existence of a sequence of ideal projections Pm onto H such that kerPn

complements E and H at the same time and Pmf → Pf for every f ∈ Fd[x]. In
particular

u− Pmu → u−
∑

v∈V

C(u, v)v, ∀ u ∈ U .

Since Pm is a projection onto H it follows that

(3.4) Pmu =
∑

v∈V

Cm(u, v)v +
∑

w∈W

Cm(u,w)w

and

(3.5) Cm(u, v) → C(u, v),∀u ∈ U and Cm(u,w) → 0, ∀w ∈ W .

Since kerPm complements E, we let Qm be the ideal projection onto E with
kerQm = kerPm. Then u− Pmu ∈ kerPm = ker Qm and

0 = Qm(u− Pmu) = Qmu− (
∑

v∈V

Cm(u, v)Qmv +
∑

w∈W

Cm(u, w)Qmw)

or

(3.6)
∑

v∈V

Cm(u, v)Qmv +
∑

w∈W

Cm(u,w)Qmw = Qmu.

At this point it is important to notice that, as projections onto E, the operators
Qm depend polynomially on d×N parameters B as in (2,4):

(3.7) Qmf =
N−1∑

k=0

q
(m)
k,f (B)xk

1

where q
(n)
k,f ∈ FdN [B]. Rewriting (3.6) we have:

(3.8)
N−1∑

k=0

(
∑

v∈V

Cm(u, v)q(m)
k,v (B) +

∑

w∈W

Cm(u,W )q(m)
k,w (B))xk

1 =
N−1∑

k=0

q
(m)
k,u (B)xk

1
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or equivalently
(3.9)∑

v∈V

Cm(u, v)q(m)
k,v (B) +

∑

w∈W

Cm(u,w)q(m)
k,w (B) = q

(m)
k,u (B), u ∈ U, k = 0, ..., N − 1.

Since #V + #W = N , this is the system of N × #U equations with the same
number of unknowns {Cm(u, v), u ∈ U} and {Cm(u,w), u ∈ U}. By Cramer’s rule

(3.10) Cm(u, v) =
detVm,u,v(B)

detVm(B)
,

where det Vm(B) is the determinant of the matrix on the left-hand side of (3.9),
and det Vm,u,v(A) is the determinant of the same matrix with the (u, k)-th column
replaced by the column (q(m)

k,u (B)). Notice that that makes Cm(u, v) rational func-
tion of d×N parameters B with common denominator. Thinking of 1/ det Vm(B)
as just another variable, say z, we conclude that the set

C := {z detVn,u,v(B), B ∈ FdN , z ∈ F\{0}} ⊂ F#U×#V

is a polynomial image of FdN+1 where the first dN parameters are the parameters
of B. As such C forms an affine subvariety of F#U×#V with dim C ≤dN + 1 (cf [4],
Theorem 2, p. 466). Hence if

(3.11) #U ×#V > dN + 1

then there exists a collection C(u, v) ∈ F#U×#V which is not in the closure of C,
contradicting (3,5).

Now we only need to count. As was pointed out in [5], we have #Md
n[x] =(

n+d−1
d−1

) ≈ ( nd−1

(d−1)! ), choosing the partition U ∪ V = Md
n[x] such that #U =⌊

1
2

(
n+d−1

d−1

)⌋
we have

#U ×#V =
⌊

1
2

(
n + d− 1

d− 1

)⌋⌈
1
2

(
n + d− 1

d− 1

)⌉
≈ 1

4
(

nd−1

(d− 1)!
)2 ≈ n2d−2

while N = dim H = dimFd
≤n[x] − #U =

(
n+d

d

) −
⌊

1
2

(
n+d−1

d−1

)⌋ ≈ nd

d! ≈ nd. Hence
for sufficiently large n, (3.11) holds. Direct computation yield (3.11) with n = 7,
for d = 3; n = 3 for d = 4 or 5 and n = 2 for d > 5. ¤

Remark 3.2. The ”bad” ideals do not exist in F[x] for d = 1, as follow from the
Theorem2.3, since, for d = 1, every ideal in JN is complemented to

E := span{1, x1, x
2
1, ..., x

N−1
1 }.

”Bad” ideals also do not exist in C[x] for d = 2 as noted in [8]. The existence of
”bad” ideals in R[x] for d = 2 is an open problem.
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